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Abstract

Higher order differential equations as a field of mathematics has gained importance with regards to the
increasing mathematical modeling and penetration of technical and scientific processes. This paper constitutes
a presentation of some established old methods with emphasis on their limitations as well as the development of
a newly proposed method for solving linear higher order ordinary differential equations with non-constant
coefficients. This alternative solution eliminates the need for the commonly employed searching/guessing
techniques of finding one linearly independent solution in order to obtain the other linearly independent
solutions for the type of higher order differential equations considered.
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INTRODUCTION

“Ordinary differential equations” is a wide
mathematical discipline which is closely related to
both pure mathematical research and real engineering
world applications. Most mathematical formulations
of physical laws are described in terms of ordinary
and partial differential equations, and this has been a
great motivation for their study in the past. In the
20th century the extremely fast development of
Science led to applications in the fields of chemistry,
biology, medicine, population dynamics, genetic
engineering, economy, social sciences and others, as
well (Canada et al., 2004; Agarwal et al., 2002;
Bognar and Dosly, 2003). All these disciplines
promoted to higher level and new discoveries were
made with the help of this kind of mathematical
modeling. At the same time, real world problems
have been and continue to be a great inspiration for
pure mathematics, particularly concerning ordinary
differential equations: they led to new mathematical
models and challenged mathematicians and research
engineers to look for new methods to solve them
(Canada and Ruiz, 2003; Cecchi et al., 2001; Fan et
al., 2002; Cabada et al., 2000).

It should also be mentioned that an extremely fast
development of computer sciences took place in the
last three decades: mathematicians have been
provided with a tool which had not been available
before. This fact encouraged scientists to formulate
more complex mathematical models which, in the
past, could hardly be resolved or even understood.
Even if computers rarely permit a rigorous treatment
of a problem, they are a very useful tool to get
concrete numerical results or to make interesting

numerical experiments. In the field of ordinary
differential equations this phenomenon led more and
more mathematicians to the study of more complex
differential equations [Shampine and Gordon, 1975;
Bui and Bui, 1979; Aynlar and Tiryaki, 2002; Dosly,
2003). The work at hand pretty well reflects the “state
of the art” in the theory of ordinary differential
equations with particular emphasis on some
established old methods as well as a newly proposed
method to solve higher order ordinary differential
equations with non-constant coefficients of the
general form:

any(") + anfly(”’]) +..+ a]y' +a,y=0 (1)

BASIC NOTATIONS

A differential equation of the form

ay" +a, YV +. . +ay +ay=F(x)
is called an n-th order linear differential equation.
Here F and the coefficients a; are functions of x
which are supposed to be continuous in a certain
interval. If ao a; . a, are constants, we call it a
differential equation with constant coefficients. If F'=
0, then the linear differential equation is
homogeneous, and if F# 0, then it is inhomogeneous.
Solution of homogeneous n-th order linear
differential equation with constant coefficients has
been well established, for example, via the root of the
corresponding characteristics equation (Hartman,
1982). In the case of the inhomogeneous non-
constant coefficient n-th order linear ordinary
differential equations, the solutions of the
corresponding homogeneous equation are employed
as the basis to determine the solution of the
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inhomogeneous differential equation by the method
of undetermined coefficients (Bronshtein et al.,
2005). This is done in accordance with the
Superposition Principle, which states that if y;(x) and
¥(x) are two solutions of the differential equation (2)
for different right-hand sides Fi(x) and F,(x), then
their sum y = y; + », is a solution of the same
differential equation with the right-hand side F = F; +
F,. From this observation it follows that to get the
general solution of an inhomogeneous differential
equation it is sufficient to add any particular solution
of the inhomogeneous differential equation to the
general solution of the corresponding homogeneous
differential equation.

The solution becomes more complicated however
when ay_a,, _a, are functions of x, i.e. in the case of
non-constant coefficient linear ordinary differential
equations whose solutions would be further
developed in this paper.

Reduction of Order
One of the most important solution methods for n-th
order linear differential equations is the substitution
of certain variables in order to obtain a simpler
differential equation, especially one of lower order.
The simplest case is when y™ is an explicit function
of x, wherein the general solution is obtained by n
repeated integrations. Different more complicated
cases can be highlighted:

»  When x does not appear explicitly:

Sy ™)=0 3)
By making appropriate substitutions as follows into
equation (3):

d_ Ly dpdy () &l @
de T dd Tdy dx’ dy a’ [

the order of the differential equation will be reduced
from nto (n—1).
» Wheny does not appear explicitly:
SOy ™) =0 (%)
The order of the differential equation can be reduced
from n to (n — 1) by making appropriate substitutions
as follows:
dy _d’y _dp d'y _(d’p) ©)
dx Tdx?odxdx’ de? |7
this is made easier if the first i-th derivatives are
missing in the differential equation, then it would be
necessary to substitute p =y 9 .
> When f (x, », ¥y, Y) = 0 is a
homogeneous function in y, y’,..., y™:
@y y)=0 ()
The order of the differential equation could be
lowered from n to (n — 1) by transforming the
differential equation (7), making use of the following
substitutions:

2
y'=d—y:zy:>y=e!2dx'd J =yd—z+yzz;...

dx " dx? dx

®)

Fundamental Set of Solutions

A system of n solutions y;, y,, ..., y, of a
homogeneous linear differential equation (1) is called
a fundamental set of solutions if these functions are
linearly independent on the considered interval, i.e.,
their linear combination Cyy; + Cyy, + ...+ Cpy, 1s not
identically zero for any system of values Cy, C,, ...,
C, except for the values C;, = C, = ...= C, = 0. The
solutions yi, »3, ..., ya of a linear homogeneous
differential equation form a fundamental set of
solutions on the considered interval if and only if
their Wronskian determinant, W, is non-zero:

y] y2 yn
1 1 1
9
0% W = P S Y ©
(n-1) (n-1) (n-1)
y] y2 n
If the solutions yy, y,, ..., ¥, form a fundamental set

of solutions of the differential equation (1), then the
general solution of the linear homogeneous
differential equation is given as
y=Cin+Cy+ ...+ Cyn (10)
It therefore implies that a linear n-th order
homogeneous differential equation has exactly n
linearly independent solutions on an interval, where
the coefficient functions a;(x) are continuous.

Lowering the Order if y; is Known

If we know a particular solution y(x) of a
homogeneous differential equation, then by
assumption and appropriation of the substitution y,(x)
= y1(x) - u(x) into (10), and subsequently into (1), we
can determine further solutions y,(x), ..., yu(x)
progressively from a homogeneous linear differential
equation of a reduced order (n — 1), (n —2), ... forz =
u’(x), etc.

For the sake of illustration of the above concepts,
we will restrict our further investigations to the case
of real constants ay ... a, in the linear homogeneous
higher order differential equation with non-constant
coefficient of the type:

a,x"y" +a, x"'y" V. +axy +a,y=0-

For instance, let us consider a second order linear
homogeneous differential equation with non-constant
coefficient of the following form:

ax*y +bxy +cy =0 (11)
Now if a particular linearly independent solution to
the differential equation (11) is y;(x) and we seek the
second linearly independent solution as y,(x) = y(x) -
u(x), it follows that:

Y =yutuy;  and y, =yu +2uy +uy (12)
By plugging in y,(x) = yi(x) * u(x) together with
equations (12) into (11), after appropriate
mathematical manipulations we obtain the following:
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u(axzyln +be{' +cyl)+ax2u"y1 +u'(2ax2y1' +bx){):0 (13)

Now since y;(x) is a particular linearly independent
solution to the differential equation (11), it will
satisfy equation (11). If this is taken note of in
equation (13), and further substitutions
zxX)=u'(x);z" =u""(x) (14)
are made, equation (13) could be reduced to a first
order linear differential equation in z = u’(x):

ax2y12'+z(2ax2y1'+bxyl):0 15)
Dividing through by axzyl the homogeneous

equation (15) could be expressed in standard form:
. 2y,
oz 20y L 0 (16)
b2 ax

The integrating factor for equation (16) could be
evaluated thus:

a7

exp[[+b]d = exp(lny] ) exp(lnx/) /
oo
We get the solution of equation (16) thus:
z:u:d—u—L:u:j’de 4
i i

Subsequently, the second linearly independent
solution y,(x) will be

19)

C
Yo = Uy, :ylj. W X
»noxe
And finally the general solution to second order
linear homogeneous differential equation (11) with

non-constant coefficient in accordance with equation
(10) will take the form:

C
y=Cy+Cyy, = )ﬁ[c +C I[/]dx]
Y x

Alternative Solution If Y, >, ..., ¥, Are Unknown
Existing solution methods of higher order linear
ordinary differential equations with non-constant
coefficients, for instance by variation of parameters
or the just considered reduction of order depend on
the availability of a known linearly independent
solution, which serves as the basis for obtaining the
other fundamental sets of solution, first for the
homogeneous equation, then followed by the
assumption of analogies between the homogeneous
and the inhomogeneous higher order differential
equations. This is however based on guessing and/or
trial and error methods to obtain a known linearly
independent solution. We present an alternative
solution method with no previously given
independent solution. This method is suitable and
tested for all linear homogeneous n-order differential
equations with non-constant coefficients of the type:

ax' y(") X y("’l) +.. .+a1xy' +a,y=0,

(20)

n—l

illustrated still with the aid of the example given in
equation (11). We could seek a particular solution
1(x) of the differential equation (11) in the form y;(x)
= x* where k; is a non-zero constant. Thus,

=k and y, =k(k-1)x*? 1)
Plugging in y,, y;-, and y,~ from (21) into (11) and
subsequent algebraic transformations yield the
following: (22)
k(k=D)ax*x* + koo™ + et =0= ak? +(b—a)k+c =0

The roots of the defining quadratic equation (22), k;
and k, are given by:

k= (a—b)++(b—a)’ —4ac and k= (a—b)— b—ay —4ac
" 2 T 2

N =x* :>J’1y

(23)

It is obvious from equation (23) that the roots of the
resulting defining equation (22) could be same or
different and then we could get two linearly
independent solutions of the differential equation
(11). Several cases could be highlighted for real,
imaginary roots:

Case l: ki #k,

We can be convinced that the two linearly
independent solutions y(x) = X!, and (x) = X,
since their Wronkian determinant from equation (9)
will be non-zero as long as k; # k,. The general
solution of the differential equation (11) will take the
form:
y=Ciy+Cy=C M+ (24
Case 2: k; =—k,,when a=b

A special case could be distinguished when the roots
ki, k, could be expressed as +k. Substitution of the
equity a = b into equation (23) gives

k=~ and k==~ (25)

The general solution of the differential equation (11)
in the case is expressible as follows:

F+er F(C+C m] (26)

Case3: ki=k,=k
Here we obtain only one linearly independent
solution y;(x) = x* and we can get a second solution
y2(x) with help of equation (19). By plugging in the
appropriate values into equation (19):

(o242 (27)

c R cx e
Vo= ||~ dx=x = x* +C
2 ‘.[[ylzxA]d I[ % /]d (1—2k—é) 0
a

. 2k+b/ 21 o
It is noteworthy that @ to avoid division by
zero in equation (27). For the special case, when
2k + b/ =
a

y=Cx

this would be taken note of before
integration is performed and it can easily be shown
that the general solution to the differential equation
(11) will take a simplified form:

y=x"(Cy+Clnx) (28)
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CONCLUSION

This study focuses on the review and development of
the techniques for solving linear higher order
ordinary differential equations with non-constant
coefficients. The generally established methods have
been presented while highlighting their limitations
and thereafter employed to develop a new method.
The significance of the newly proposed method lies
in the elimination of the need for commonly
employed searching/guessing techniques of finding
one linearly independent solution in order to obtain
the other linearly independent solutions for the type
of higher order differential equations considered.
This solution could be applicable to the development
of special solutions of engineering models for various
types of real problems. Mathematicians and scientists
interested in the recent results and methods in the
theory and applications of ordinary differential
equations will find the paper useful.
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